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LETI'ER TO THE EDmOR 

Stochastic resonance in monostable systems 

N G Stocks, N D Stein and P V E McClintock 
School of Phy;ics and Materials, Lancaster University, Lancaster, LA1 4YB, UK 

Received 18 January 1593 

Abstract. The fost observations of noise.induced :nhancements and phase shifts of a 
weak periodic signal-characteristic signatures of stochastic resonance (sR)-are reported 
for a monostabable system. The results arc shown to be in good agreement with a theoretical 
description based on linear-response theo~y and the fluctuation dissipation theorem. It is 
argued that SR is a general phenomenon that a n  in principle occur for any underdamped 
nonlinear oscillator. 

Stochastic resonance (SR) is widely perceived as a phenomenon peculiar to bistable 
systems in which, under appropriate conditions, a weak periodic signal can be 
amplified by the introduction of external noise. It has been studied in a variety 
of contexts including meteorologV [I], lasers [Z], passive optical systems [3], electron 
spin resonance (ESR) 141, electronic circuits [5, 61 and a magnetoelastic ribbon [7]; 
arguably it is also of relevance to the function of sensory neurons [SI. In all of 
these cases, the mechanism [9] of stochastic amplification depends on the onset, 
for appropriate noise intensity, of quasi-periodic fluctuational transitions between 
coexisting attractors corresponding to the minima of a static bistable potential. At first 
sight, therefore, it would appear that there are powerful a priori reasons to suppose 
that SR cannot occur at all unless the system under study possesses at least two 
coexisting attractors; but we will demonstrate below that the conventional wisdom is 
wrong. In this letter we develop a rather different and much more general perception 
of SR that shows, remarkably, that the phenomenon need not be confined to static 
bistable (or multistable) systems but can also manifest itself, for example, in a class 
of monostuble nonlinear oscillators. 

We propose that candidate systems in which to seek new forms of SR may readily 
be identified through the perception of SR as a linear response phenomenon 161. 
In practice, one should seek systems which, when driven by Gaussian white noise, 
exhibit one or more well defined sharp maxima in the spectral densities Q,,(w) of 
their fluctuations (SDB) in the absence of the periodic force. In those cases where the 
SDF close to such a maximum increases rapidly with noise intensity T, the fluctuation 
dissipation theorem [IO] implies that the susceptibility of the system must also be 
increasing with T, and a manifestation of SR is therefore to be expected when the 
weak periodic force is added to the system. (In this scenario, conventional SR is 
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Figure 1. Sketches to show the dependence of the 
eige&quency w ( E )  on energy E measured hom lhe bottom 

b of the potential well for the system (1): (0 )  for IBI < 0.43; 
,.@) for IBI > 0.43. Frequencies R at which a weak periodic 

force will be amplified by SR axe indicated. 
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associated with the zero-frequency SDF peak [15] corresponding to inter-well hopping 
within the static bistable potential.) 

The advantages and disadvantages of the linear response theory ("r) approach 
to SR have already been rehearsed elsewhere Ill]. Nonetheless, it may be worth 
repeating that the disadvantage of LKT is that it is only applicable when (as is often 
the case in practice) the periodic force is weak. Of its many advantages we would 
emphasize here only that, in contrast to other theories of SR (e.g. 112-14]), LFX avoids 
the problem of non-stationarity by calculating the susceptibility from Qo(w)  in the 
absence of the periodic force. 

An example of a promising monostable candidate system in which to seek SR, 
which fulfills 1161 the criteria proposed above, is provided by the single-well Duffiig 
oscillator driven by Gaussian white noise plus a weak periodic force 

u(q)= ; q 2 t  ;q4 t Bq 

( f ( t ) )  = 0 

r < I  
(f(t)f(t')) = 4i-T6(1- F'). 

We consider hvo distinct cases, depending on the magnitude of IBI. In case (U), 

IBI < 0.43, the variation of the oscillator's eigenfrequency w ( E )  with energy E 
measured from the bottom of the potential well is monotonic 1161, as sketched in 
figure I@). In the absence of the periodic force (A = O), for small noise intensity T, 
a narrow Lorentzian peak of width - r occurs in the SDF at frequency w ( 0 ) .  As 
T is increased, the average energy of the oscillator rises, and the peak broadens 
asymmetrically 1161 towards higher frequencies. For an Q > w(O), initially on the 
tail of the peak i.e. [a -w(O)]  > r, the magnitude of Q a ( Q )  therefore increases 
very rapidly (approximately exponentially) with T .  The corresponding increase in the 
generalized susceptibility x ( Q )  of the system implied by the fluctuation dissipation 
theorem [lo] means, in turn, that a weak periodic force on the right-hand side of (1) 
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will be amplified by an increase of T.  Surprising though it may seem at first sight, SR 
is therefore to be anticipated in (1) even though the system is monostable, with U ( q )  
a smooth single-well potential. The resonance maximum is to be expected when T 
has been ‘tuned‘ to adjust such that w ( E )  - R. This argument is extremely general 
and can obviously be applied, perhaps with minor variations, to any underdamped 
nonlinear oscillator. 

In case (b) with IBI > 0.43, on the other hand, w( E )  is non-monotonic 1161, as 
sketched in figure I(b). In the absence of the periodic force (A = 0), the system 
exhibits noise-induced spectral narrowing 1161 and, for sufficiently small values of 
the damping constant r, exceedingly sharp zero-dispersion spectral peaks (ZDPS) 
of width 0: r1I2 appear [17] close to the frequency w, of the extremum where 
dw(E)/dE = 0. The magnitude of the ZDP rises exponentially with increasing T. 
Just as in case (U)  the corresponding rapid increase of ~ ( 0 )  implies a manifestation 
of SR for R close to w,. The extreme narrowness of the ZDP [17] suggests that SR 
in case (b) will be a much more dramatic phenomenon than in case (U ) .  (Clearly, 
a case (a)-type resonance can also be obtained by making R > w(O), even when 
IB[ > 0.43.) 

To test these predictions, we have sought evidence of SR in an electronic model 
of (1) designed, constructed, and operated according to standard practice [NI. For 
the results to be presented below, the parameter values used were: r = 0.011; 
A = 0.020; and B = 0 or B = 2.00 for cases ( U )  or (b) respectively. The value 
of r was in fact too small to be determined directly from the circuit components 
(owing to the effect of stray capacitance and other non-idealities); instead, it was 
measured in a separate experiment. The model was driven with quasi-white noise 
from an external noise generator, and with a weak periodic force from an HF’3325 
frequency synthesizer. The resultant fluctuating q ( t )  was digitized in 1024 point 
blocks and ensemble-averaged by a Nicolet JAB80 data processor to yield (q ( t ) ) .  
The advantage of averaging in the time (rather than the frequency) domain is that 
it enables measurements to be made of the phase shift 4 between the drive and 
the response [4,6,11] as well as yielding directly the amplitude a of the response. 
Measurements were made of the stochastic amplification factor [19] 

= 4 T ) / a ( O )  (2) 
and of the corresponding value of over a wide range of T for the two cases (a) 
and (b). 

Some typical measurements of the noise-induced power gain are shown by the data 
points in figure 2 (where we plot S2, rather than S, for more convenient comparison 
with earlier SR results). It is immediately evident that, both for case (U)  (squares) 
and for case (b) (circles), Sz at first increases rapidly with noise intensity, but then 
passes through a mavimum and decreases again, albeit more slowly. That these data 
should bear a striking resemblance to those obtained previously for conventional SR 
[Z-71 is, of course, no coincidence. We emphasize that, in the case of a linear 
system (harmonic oscillator), S2 would not increase at all but would remain equal 
to unity irrespective of the value of T.  As anticipated, the maximum is much larger 
for case (b) than for case (U);  it can be shown [ZO] that, in case (b) for sufficently 
small r, not only the signal but also the signaVnoise ratio increases with increasing T 
withii a certain range. 

The measured phase lag -4 between the drive and response is plotted for case (U)  

(squares) and case (b) (circles) in figure 3. The forms of -d( 2’) for the two cases 
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Flgure 2. The squared stochastic amplification fao 
tor Sz measured for case (a) (squares) and case (6) 
(circles) as a function of noise intensity T for the 
electronic circuit model of (1) with A = 0.02 
is mmpared with the theoretical predictions (full 
curyes) obtained from the fluctuation dissipation 
theorem. 

Figure 3. The phase difference -6 (in d e p e s )  
befween the drive BwsRt and the response 
(q (1 ) )  measured for case (a )  (squares) and case (b )  
(circles) as a function of noise intensity T for the 
electronic cuwit model of (1) with A = 0.02 
is mmpared with the theoretical predictions (full 
curves) obtained from the iluctuation dissipation 
theorem. 

are strikingly different, but they can readily be understood qualitatively by analosy 
with a conventional (deterministic) resonance. In case (U )  for T = 0, the periodic 
driving force is being applied at a frequency well beyond the natural frequency of 
the system, R > w(0) (see figure l(u)).  Consequently -4 is close to 180". As T is 
increased, however, the 'natural frequency' w ( E )  is effectively being tuned past the 
fixed driving frequency. Near rmnance -4 passes through 90° and, in the high-T 
limit where the 'natural frequency' substantially exceeds R, -Q decreases towards Oo 
exactly as would be seen in a conventiond resonance. The phase changes for case (b), 
while quite different, can be accounted for in a closely similar way. In this case, the 
'natural frequency' w( E )  always exceeds that of the drive R (figure l(b)), and so the 
phase lag -Q is always less than !No, although it approaches 90e near the resonance 
maximum, just as expected. 

A quantitative theoretical description of these phenomena is readily constructed 
on the basis of linear response theory (LRT), and is relatively straightforward given 
that the SDF of (1) forA = 0, QO(w). is already known (161. The susceptibility x(n) 
of the system can be found immediately from the fluctuation dissipation theorem [lo] 

Rex@) = $ p ~ m d w l l w ? / ( u ~  - Rz)1Qo(wl) (3) 

Imx(R) = (*n/T)Q@) (4) 

where P implies the Cauchy principal part. The squared amplitude of the response 
is then just a2 = A21x(R)[* so that 

sz = [ a ( ~ ) / a ( o ) ] Z  = ~~(n) l * / { [~ (o)~-  nZl2 +4rzn2} (5) 
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and 

4 = - tan-'[Imx(fi)/Rex(C2)]. ( 6 )  

The quantity Qo(w) in (3) and (4)-which, we emphasize again, is the SDF in the 
absence of the periodic force-was obtained from equation (20) of 1161, also using 
equations (b), (&), (14), (A7), (A9) and a numerical solution of (16) therein. Values 
of S2 and q4 calculated in this way from (3)-(6) for (1) with the parameters used in the 
circuit and are plotted (full curves) as functions of Tin figures 2 and 3 for comparison 
with the experimental measurements. Given that there are no adjustable parameters, 
the agreement between experiment and theory can be regarded as excellent. 

The physical mechanisms of these stochastic amplification phenomena differ 
radically from that of conventional SR [SI, and it might therefore be argued that 
the new effects reported in this letter deserve to be given an entirely different name. 
We would disagree with any such proposition, however, on two grounds: because, as 
we have shown, a unified theoretical description of both sets of phenomena can be 
constructed in terms of LRT and the fluctuation dissipation theorem; and also because, 
ironically, the term stochastic resonance actually provides a more apt description of 
the new phenomena than it does of conventional SR which, strictly, should not [21] 
be referred to as a resonance at all. 

In conclusion we would emphasize, first, that the case-(a) variant of SR discovered 
and investigated in the present work is in no way confined to the particular system (1). 
Rather, it is a quite general phenomenon, to be anticipated in all underdamped 
nonlinear oscillators. In all situations where, as in case (b), the eigenfrequency has 
a smooth extremum in its variation with energy (or has a higher singularity), a more 
pronounced manifestation of SR is to be anticipated: it might reasonably be called 
zero-dispersion srocliastic resonance (ZDSR). Secondly, there is an interesting distinction 
between the present results and those of conventional SR. In the latter case, stochastic 
amplification occurs in both overdamped and underdamped systems but is at its most 
pronounced when the damping is large; the new forms of SR studied above, on the 
other hand, are entirely restricted to underdamped systems and are most pronounced 
when the damping is small. Finally, the differing dependences of the SR phase shift on 
noise intensity for cases (a) and (b) have helped to illuminate in a satisbing way the 
remarkably close analogy that exists between stochastic and deterministic resonance 
phenomena. 

This work developed out of discussions with Mark Dyhan,  who first proposed that 
SR should be considered within the conceptual framework provided by LKT and the 
fluctuation dissipation theorem, with Riccardo Mannella who drew our attention 
to the significance of phase shifts in SR, and with Slava Soskin who predicted the 
existence of the zero-dispersion spectral peaks. It was supported by the Science and 
Engineering Research Council (UK), by the Royal Society of London, and by the 
European Community. 
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